Saturday, July 25, 2020

Physics and Technological Revolutions

This article is by

Share this article

Article Contributor(s)

Oem Trivedi

Article Title

Physics and Technological Revolutions

Publisher

Global Views 360

Publication Date

July 25, 2020

URL

IBM Quantum Computer, an innovation based on Quantum Physics

IBM Quantum Computer, an innovation based on Quantum Physics | Source: IBM Research via Flickr

As he witnessed the first detonation of a nuclear weapon on July 16, 1945, a piece of ancient Scripture “Bhagwad Geeta” ran through the mind of Robert Oppenheimer: “Now I am become Death, the destroyer of worlds”. Oppenheimer, alongside the likes of Richard Feynman, Enrico Fermi, George Gamow, was part of the star-studded Physicist squad behind the Manhattan Project.

The biggest implications drawn from the end of WW2 for many might have just been the incoming power Struggle between the US and Soviet Union, but for your average American it went to a great length to show that Physicists form a breed of people who can build dangerously effective technology.

That fact, however, would have been evident to anyone with a brisk walk through Human History itself. Physicists have arguably provided the most significant contributions to the Technological Development of our race. From Archimedes building light reflectors to save the Greek Army from Roman Infiltration to the large-scale Ballistic Missile systems made during WW-II, weaponry technology has been highly influenced by physicists in every generation.

But mere list of armaments cannot do justice to the role played by Physics Research in Technological Developments of our society. To get a feel for that, let’s go back to the fathers of Modern Physics as we know it; Sir Isaac Newton and Galileo Galilei. Galileo had his long list of achievements in creating cutting edge technology of the day, ranging from Telescopes to Thermometers & the Magnetic Compass. Sir Isaac for his part was the reason behind the advent of the Industrial Revolution in Great Britain!

The simple Atwood Machines which have today become mainstay material taught to College Freshman and High School Seniors worldwide, were actually the kind of mechanical models on which the large-scale Factory Machines were built. Newton’s laws kickstarted the modern Technological Revolution and ever since then, Physics has been a constant source of inspiration behind all Technology.

The great pioneers in the field “Natural Philosophy” (the physics of today) after Newton continued the trend which their illustrious predecessor had started. The seminal works on Thermodynamics by the likes of Lord Kelvin, Ludwig Boltzmann, James Clerk Maxwell etc. played the decisive part in creating automobile engines and really any technology which dealt with heat (Spoiler Alert- There were a lot of them!). Maxwell’s work on the famous equations on Electromagnetism now named after him played the most significant part in the mission of making Electricity available to everyone (a conquest now just famously remembered for the fight between Nikola Tesla and Thomas Edison).

While one can point out that Theoretical works cannot lead to new Technology on their own, that assertion is only the half-truth. Sure, building technology on the basis of theoretical physics is mostly down to the Engineers, but one cannot underestimate the effect new theoretical developments and their possible uses have on the construction of new technologies. After all, if one was not able to understand the principles of the conversion of mass to energy or Electric & Magnetic Fields are coupled to each other, then expecting the construction of Nuclear Reactors and virtually all Electric Tech today would have been off the table.

So one might ask, what are the new theoretical ideas which can guide the next leap forward technologically? Well, no one can be quite sure of the form which technology will take in even a couple of decades (who would have thought that Server systems designed for efficiently using giant Data in CERN would one day be heavily used for making memes!).

I would go as far as to say that we have not yet completely exhausted the technological possibilities of the Special Theory of Relativity itself, the most prominent example of game changing technology based on that has been GPS Communication systems. One can hence fail to even imagine the kind of technological (and Industrial) progress technologies built on the revealing concepts from General Relativity and Quantum Mechanics can bestow upon us (I’m even refraining to comment on the Quantum Field Theoretic parts!).

Whatever that physics will lead us to is a mystery time will be most suited to answer, but one can see the effects of Quantum Mechanics in the next Computational Revolution itself; Quantum Computing. To put into perspective the extent of development Quantum Computing can bestow upon us, consider the following.

Computational devices today, which are stronger than the computers which put humans to the moon, are fundamentally built upon binary bit systems. From generating Big Bang like Energies in CERN and reaching past Saturn, to making all the knowledge available to everyone has been done in two bits. While Quantum Computers, which are being vividly researched on, can work with virtually infinite bits ! So, hold on tight as exciting new physics promises some large-scale changes on our Civilization as a whole.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

April 13, 2021 2:10 PM

Detecting The Ultra-High Energy Cosmic Rays With Smartphones

Smartphones have become the most commonplace objects in our daily lives. The unimaginable power that we hold in our hands is unrealized by most of us and, more importantly, untapped. Its creativity often gets misused but one can only hope that it’s fascinating abilities would be utilized. For example, did you know that the millions of phones around the globe can be connected to form a particle detector? The following article covers the CRAYFIS (Cosmic RAYs Found in Smartphones) phone-based application developed by the physicists from the University of California—Daniel Whiteson, Michael Mulhearn, and their team. CRAYFIS aims to take advantage of the large network of smartphones around the world and detect the cosmic or gamma rays bursts which enter the Earth’s atmosphere almost constantly.

What Are Cosmic Rays?

Cosmic rays are high velocity subatomic particles bombarding the Earth’s upper atmosphere continuously. Cosmic ray bursts have the highest energy compared to all forms of electro-magnetic radiation. When we say ultra-high energy particles (energy more than 1018^eV), we mean two million times more energetic than the ones that can be produced by the particle colliders on Earth.  These rays are thought to be more powerful than typical supernovae and can release trillions of times more energy than the Sun. They are also highly unpredictable as they can enter Earth’s atmosphere from any direction and the bursts can last for any period of time ranging from a few thousand seconds to several minutes.

Despite many theoretical hypotheses, the sources of these ultra-high energy cosmic rays are still a mystery to us even after many decades of their discovery. These rays were initially discovered in the 1960’s by the U.S. military when they were doing background checks for gamma rays after nuclear weapon testing. Cosmologists suggest that these bursts could be the result of super massive stars collapsing - leading to hypernova; or can be retraced to collisions of black holes with other black holes or neutron stars.

How Do We Detect Them?

When the high-energy particles collide with the Earth’s atmosphere, the air and the gas molecules cause them to break apart and create massive showers of relatively low-energy particles. Aurora borealis i.e., the Northern and the Southern lights are the lights that are emitted when these cosmic rays interact with the Earth’s magnetic field. Currently, these particles are hitting the Earth at a rate of about one per square meter per second. The showers get scattered to a radius of one or two kilometers consisting mostly of high-energy photons, electrons, positrons and muons. But the fact that these particles can hit the Earth anytime and anywhere is where the problem arises. Since the Earth has a massive area, it is not possible to place a detector everywhere and catch them at the exact moment.

Energetic charged particles known as cosmic rays hit our atmosphere, where they collide with air molecules to produce a shower of secondary particle | Source: CERN

Detecting such a shower requires a very big telescope, which logically means a network of individual particle detectors distributed over a mile or two-wide radius and connected to each other. The Pierre Auger Observatory in South America is the only such arrangement where 1,600 particle detectors have been scattered on 3,000 square kilometers of land. But the construction cost of the same was about $100 million. Yet, only a few cosmic ray particles could be detected using this arrangement. How do we spread this network around the Earth?

In addition to being cost-effective, such a setup must also be feasible. The Earth’s surface cannot possibly be dotted with particle detectors which cost huge fortunes. This is where smartphones come into the picture.

Detecting The Particles Using Smartphones

Smartphones are the most appropriate devices required to solve the problem. They have planet wide coverage, are affordable by most people and are being actively used by more than 1.5 billion users around the planet. Individually, these devices are low and inefficient; but a considerably dense network of such devices can give us a chance to detect cosmic ray showers belonging to the highest energy range.

Previous research has shown that smartphones have the capability of detecting ionizing radiation. The camera is the most sensitive part of the smartphone and is just the device required to meet our expectations. A CMOS (Complementary Metal Oxide Semiconductor) device is present in the camera- in which silicon photodiode pixels produce electron-hole pairs when struck by visible photons (when photons are detected by the CMOS device, it leaves traces of weakly activated pixels). The incoming rays are also laced with other noises and interference from the surroundings.  Although these devices are made to detect visible light, they still have the capability of detecting higher-energy photons and also low-ionizing particles such as the muons.

A screenshot from the app which shows the exposure time, the events- the number of particles recorded and other properties

To avoid normal light, the CRAYFIS application is to be run during nighttime with the camera facing down. As the phone processor runs the application it collects data from its surroundings using a camera as its detector element. The megapixel images (i.e., the incoming particles) are scanned at a speed of 5 to 15 frames per second, depending on the frame-processing speed of the device. Scientists expect that signals from the cosmic rays would occur rarely, i.e., around one in 500 frames. Also, there is the job of removing background data. An algorithm was created to tune the incoming particle shower by setting a threshold frequency at around 0.1 frames per second. Frames containing pixels above the threshold are stored and passed to the second stage which examines the stored frames, saving only the pixels above a second, lower threshold.

The CRAYFIS app is designed to run when the phone is not being used and when it is connected to a power source. The actual performance would be widely affected by the geometry of the smartphone’s camera and the conditions in which the data is being collected. Further, once the application is installed and is in the operating mode, no participation is required from the user, which is required to achieve wide-scale participation. When a Wifi connection is available the collected data would be uploaded to the central server so that it could be interpreted.

There is much complicated math used to trace back the information collected from the application. The most important parameters for the app are the local density of incoming particles, the detection area of the phone and the particle identification efficiency. These parameters are used to find the mean number of candidates (photons or muons) being detected. Further, the probability that a phone will detect no candidates or the probability that a phone will detect one or more candidates is given by Poisson distribution. The density of the shower is directly proportional to the incident particle energy with a distribution in x and y sensitive to the direction in which the particle came from. An Unbinned Likelihood (it is the probability of obtaining a certain data- in this case the distribution of the cosmic rays including their energy and direction, the obtained data is arranged into bins which are very, very small) analysis is used to determine the incident particle energy and direction. To eliminate background interference, a benchmark requirement has been set that at least 5 phones must detect and register a hit to be considered as a candidate.

It is impossible to express just how mind-blowing this innovation is. As the days pass, Science and Technology around us keep on surprising us and challenge us to rack our brains for more and more unique ways to deal with complex problems. The CRAYFIS app is simply beautiful and it would be a dream-come-true to the scientists if the project works out and we are able to detect these high energy, super intimidating cosmic rays with smartphones from our backyard.

Further Reading

The paper by Daniel Whiteson and team can be found here.

An exciting book “We Have No Idea” by Daniel Whiteson and cartoonist Jorge Cham can be found here.

The CRAYFIS app can be found here.

Read More