Saturday, August 22, 2020

Will Cloud Gaming take over the video gaming world?

This article is by

Share this article

Article Contributor(s)

Mohammad Abdullah

Article Title

Will Cloud Gaming take over the video gaming world?


Global Views 360

Publication Date

August 22, 2020


A person engaged in PC Gaming

A person engaged in PC Gaming |Source: Florian Olivo via Unsplash

Video gaming has evolved massively over the years with much better graphics, great storyline, and breathtaking visuals. The fun began with the 8-bit games Super Mario Bros and Contra and later by the arrival of PlayStation. In the 2000s, classics like GTA San Andreas and Portal came which were followed by Call of Duty, Assassin’s Creed, and GTA V.  Now with gaming competitions, eSports, and their likes, gaming has come a long way.

A still from Need For Speed | Source: Electronic Arts

Video gaming have now evolved in multiple genres like racing (Need for Speed), Parkour style (Assassin’s Creed), FPS shooters (Call of Duty and Halo), Horror (Resident Evil series), or Sports games like FIFA. The spread of video games can be gauged by the fact that the highest Football governing body FIFA is backing the FIFA series video games. Game Streaming has gone professional now, professional footballers like Sergio Aguero or current F1 drivers like Lando Norris and Charles Leclerc becoming the online gaming hero.

With the advent of cloud gaming, the industry is now at the cusp of its most radical change. Cloud Gaming aims to provide high-end gaming experience without the super expensive PC hardware which were needed earlier. A gamer now needs just a simple low-end PC or even a smartphone to enjoy high end gaming.

Google has taken the lead in cloud gaming service by launching “Stadia'', followed by Nvidia with “GeForce Now”. Microsoft, which is one of the heavy-hitters of console gaming via their Xbox series, is shortly launching their cloud gaming service xCloud for Android in 22 countries. So anyone with an Android phone and Xbox Game Pass Ultimate subscription, can enjoy the high quality online games on their smartphone.

Google Stadia Booth at Game Developers Conference 2019 | Source: Official GDC via Flickr

Cloud gaming comes with many advantages, the biggest of these is that there is no need to download a huge amount of data for running these games. Most games nowadays come with a download size exceeding 50 GB while some like Call of Duty: Warzone and Red Dead Redemption 2 even require around 100 GB download. Then there comes all the DLCs, patches which again need huge chunks of data. Cloud gaming eliminates it.

NVIDIA Titan RTX |Source: Nvidia

The second advantage is that the above-mentioned games can even run on an Android device. Also, don’t be concerned about the quality of resolution of these cloud-run games. Google Stadia can run games at 4K resolution at 60fps, which is even the limit of the current-gen consoles. They claim to further expand it to 8K at 120fps in the future, which is a quality that the best current Graphics card, the Nvidia Titan RTX hasn’t even reached.

However, with all the advantages, cloud gaming still has some basic shortcomings. The first one among them is the requirement of very high data bandwidth. The idea of playing games at 4K@60fps may seem fascinating, but that will need a steady high-speed bandwidth. For instance, Stadia lists that one needs at least 35 Mbps connection to accomplish the said frame rate and resolution.

The second bottleneck of cloud gaming is that it requires huge amounts of data to run games at such high quality. However the main reason inhibiting its wider adoption is the high cost associated with cloud gaming. For instance, Stadia costs $9.99/month, but it only comes with some select games available for free. Many other games like Assassin’s Creed series are available at Stadia, but these are to be purchased separately and at a price almost on par with the PC and Console version of the game. These shortcomings make one wonder if they are paying a much larger amount of money compared to if they purchased a gaming PC or console.

The world entering the age of 5G internet can be a catalyst to the growth of cloud gaming across the world. It can surely challenge the upcoming next-gen consoles, the Xbox Series X and the PlayStation 5 soon. Microsoft’s approach with its xCloud service looks to be going in sync with its PC and Xbox ecosystem. It will indeed be helpful to the gaming industry in the longer run.

So, the big question arises, can Cloud gaming take over the video gaming world? For the present, the answer is a clear NO! In the future, perhaps.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

April 13, 2021 2:10 PM

Detecting The Ultra-High Energy Cosmic Rays With Smartphones

Smartphones have become the most commonplace objects in our daily lives. The unimaginable power that we hold in our hands is unrealized by most of us and, more importantly, untapped. Its creativity often gets misused but one can only hope that it’s fascinating abilities would be utilized. For example, did you know that the millions of phones around the globe can be connected to form a particle detector? The following article covers the CRAYFIS (Cosmic RAYs Found in Smartphones) phone-based application developed by the physicists from the University of California—Daniel Whiteson, Michael Mulhearn, and their team. CRAYFIS aims to take advantage of the large network of smartphones around the world and detect the cosmic or gamma rays bursts which enter the Earth’s atmosphere almost constantly.

What Are Cosmic Rays?

Cosmic rays are high velocity subatomic particles bombarding the Earth’s upper atmosphere continuously. Cosmic ray bursts have the highest energy compared to all forms of electro-magnetic radiation. When we say ultra-high energy particles (energy more than 1018^eV), we mean two million times more energetic than the ones that can be produced by the particle colliders on Earth.  These rays are thought to be more powerful than typical supernovae and can release trillions of times more energy than the Sun. They are also highly unpredictable as they can enter Earth’s atmosphere from any direction and the bursts can last for any period of time ranging from a few thousand seconds to several minutes.

Despite many theoretical hypotheses, the sources of these ultra-high energy cosmic rays are still a mystery to us even after many decades of their discovery. These rays were initially discovered in the 1960’s by the U.S. military when they were doing background checks for gamma rays after nuclear weapon testing. Cosmologists suggest that these bursts could be the result of super massive stars collapsing - leading to hypernova; or can be retraced to collisions of black holes with other black holes or neutron stars.

How Do We Detect Them?

When the high-energy particles collide with the Earth’s atmosphere, the air and the gas molecules cause them to break apart and create massive showers of relatively low-energy particles. Aurora borealis i.e., the Northern and the Southern lights are the lights that are emitted when these cosmic rays interact with the Earth’s magnetic field. Currently, these particles are hitting the Earth at a rate of about one per square meter per second. The showers get scattered to a radius of one or two kilometers consisting mostly of high-energy photons, electrons, positrons and muons. But the fact that these particles can hit the Earth anytime and anywhere is where the problem arises. Since the Earth has a massive area, it is not possible to place a detector everywhere and catch them at the exact moment.

Energetic charged particles known as cosmic rays hit our atmosphere, where they collide with air molecules to produce a shower of secondary particle | Source: CERN

Detecting such a shower requires a very big telescope, which logically means a network of individual particle detectors distributed over a mile or two-wide radius and connected to each other. The Pierre Auger Observatory in South America is the only such arrangement where 1,600 particle detectors have been scattered on 3,000 square kilometers of land. But the construction cost of the same was about $100 million. Yet, only a few cosmic ray particles could be detected using this arrangement. How do we spread this network around the Earth?

In addition to being cost-effective, such a setup must also be feasible. The Earth’s surface cannot possibly be dotted with particle detectors which cost huge fortunes. This is where smartphones come into the picture.

Detecting The Particles Using Smartphones

Smartphones are the most appropriate devices required to solve the problem. They have planet wide coverage, are affordable by most people and are being actively used by more than 1.5 billion users around the planet. Individually, these devices are low and inefficient; but a considerably dense network of such devices can give us a chance to detect cosmic ray showers belonging to the highest energy range.

Previous research has shown that smartphones have the capability of detecting ionizing radiation. The camera is the most sensitive part of the smartphone and is just the device required to meet our expectations. A CMOS (Complementary Metal Oxide Semiconductor) device is present in the camera- in which silicon photodiode pixels produce electron-hole pairs when struck by visible photons (when photons are detected by the CMOS device, it leaves traces of weakly activated pixels). The incoming rays are also laced with other noises and interference from the surroundings.  Although these devices are made to detect visible light, they still have the capability of detecting higher-energy photons and also low-ionizing particles such as the muons.

A screenshot from the app which shows the exposure time, the events- the number of particles recorded and other properties

To avoid normal light, the CRAYFIS application is to be run during nighttime with the camera facing down. As the phone processor runs the application it collects data from its surroundings using a camera as its detector element. The megapixel images (i.e., the incoming particles) are scanned at a speed of 5 to 15 frames per second, depending on the frame-processing speed of the device. Scientists expect that signals from the cosmic rays would occur rarely, i.e., around one in 500 frames. Also, there is the job of removing background data. An algorithm was created to tune the incoming particle shower by setting a threshold frequency at around 0.1 frames per second. Frames containing pixels above the threshold are stored and passed to the second stage which examines the stored frames, saving only the pixels above a second, lower threshold.

The CRAYFIS app is designed to run when the phone is not being used and when it is connected to a power source. The actual performance would be widely affected by the geometry of the smartphone’s camera and the conditions in which the data is being collected. Further, once the application is installed and is in the operating mode, no participation is required from the user, which is required to achieve wide-scale participation. When a Wifi connection is available the collected data would be uploaded to the central server so that it could be interpreted.

There is much complicated math used to trace back the information collected from the application. The most important parameters for the app are the local density of incoming particles, the detection area of the phone and the particle identification efficiency. These parameters are used to find the mean number of candidates (photons or muons) being detected. Further, the probability that a phone will detect no candidates or the probability that a phone will detect one or more candidates is given by Poisson distribution. The density of the shower is directly proportional to the incident particle energy with a distribution in x and y sensitive to the direction in which the particle came from. An Unbinned Likelihood (it is the probability of obtaining a certain data- in this case the distribution of the cosmic rays including their energy and direction, the obtained data is arranged into bins which are very, very small) analysis is used to determine the incident particle energy and direction. To eliminate background interference, a benchmark requirement has been set that at least 5 phones must detect and register a hit to be considered as a candidate.

It is impossible to express just how mind-blowing this innovation is. As the days pass, Science and Technology around us keep on surprising us and challenge us to rack our brains for more and more unique ways to deal with complex problems. The CRAYFIS app is simply beautiful and it would be a dream-come-true to the scientists if the project works out and we are able to detect these high energy, super intimidating cosmic rays with smartphones from our backyard.

Further Reading

The paper by Daniel Whiteson and team can be found here.

An exciting book “We Have No Idea” by Daniel Whiteson and cartoonist Jorge Cham can be found here.

The CRAYFIS app can be found here.

Read More